Homotopy Categories, Leavitt Path Algebras, and Gorenstein Projective Modules
نویسندگان
چکیده
For a finite quiver without sources or sinks, we prove that the homotopy category of acyclic complexes of injective modules over the corresponding finite-dimensional algebra with radical square zero is triangle equivalent to the derived category of the Leavitt path algebra viewed as a differential graded algebra with trivial differential, which is further triangle equivalent to the stable category of Gorenstein projective modules over the trivial extension algebra of a von Neumann regular algebra by an invertible bimodule. A related, but different, result for the homotopy category of acyclic complexes of projective modules is given. Restricting these equivalences to compact objects, we obtain various descriptions of the singularity category of a finite-dimensional algebra with radical square zero, which contain previous results.
منابع مشابه
Homotopy category of projective complexes and complexes of Gorenstein projective modules
Let R be a ring with identity and C(R) denote the category of complexes of R-modules. In this paper we study the homotopy categories arising from projective (resp. injective) complexes as well as Gorenstein projective (resp. Gorenstein injective) modules. We show that the homotopy category of projective complexes over R, denoted K(Prj C(R)), is always well generated and is compactly generated p...
متن کاملGeneralized Serre duality
We introduce the generalized Serre functor S on a skeletally-small Hom-finite Krull-Schmidt triangulated category C. We prove that its domain Cr and range Cl are thick triangulated subcategories. Moreover, the subcategory Cr (resp. Cl) is the smallest additive subcategory containing all the objects in C which appears as the third term (resp. the first term) of some Aulsander-Reiten triangle in ...
متن کاملMini-Workshop on Gorenstein Homological Algebra
We will introduce the notion of Gorenstein category as the convenient setup for doing Gorenstein Homological Algebra in categories of sheaves, or in general in categories without enough projective objects. We will illustrate this notion by showing that the category of Qcoh(X) of quasi-coherent sheaves on a locally Gorenstein projective scheme fits into this setup. Then we will focus on the cate...
متن کاملGorenstein Model Structures and Generalized Derived Categories
In [Hov02], the second author introduced the Gorenstein projective and Gorenstein injective model structures on R-Mod, the category of R-modules, where R is any Gorenstein ring. These two model structures are Quillen equivalent and in fact there is a third equivalent structure we introduce; the Gorenstein flat model structure. The homotopy category with respect to each of these is called the st...
متن کاملA Brief Introduction to Gorenstein Projective Modules
Since Eilenberg and Moore [EM], the relative homological algebra, especially the Gorenstein homological algebra ([EJ2]), has been developed to an advanced level. The analogues for the basic notion, such as projective, injective, flat, and free modules, are respectively the Gorenstein projective, the Gorenstein injective, the Gorenstein flat, and the strongly Gorenstein projective modules. One c...
متن کامل